Flattening your flats or: How I learned to stop worrying and love the CBP

Merlin Fisher-Levine - Princeton

Why do we flat-field / what does it do?

- Corrects for amplifier-to-amplifier gain variation & pixel-to-pixel QE
 - i.e. deals the conversion between ADU and incident photons
- Quick history of flat-fielding:

 And what about the spectrum?
 Time variable night-to-night

 Twilight flats
 - Nighttime sky flats
 - Conventional dome flats→ Alt/az telescope + stray/scattered/ghosted light → flat-fields depend on rotator position, >5% difference Typically incorrect input spectrum, + lamp variability

Night sky spectrum

Time variable night-to-night

• What comes next?

Why do we flat-field / who does it do?

- Corrects for amplifier-to-amplifier gain
 - i.e. deals the conversion be
- Quick history of flat-fit
 - Twilight #
 - Fields With

ne flats→

Alt/az telescope + stray/scattered/ghosted light

→ flat-fields depend on rotator position, >5% difference
Typically incorrect input spectrum, + lamp variability

Wes next?

a → large gradients. Sout the spectrum? Triable night-to-night

Time variable night-to-night Night sky spectrum

What is a CBP

• CBP stands for Collimated Beam Projector

Essentially, it's a telescope "run backwards"

 A telescope is a device which maps angles to positions

So reversing this...

 A CBP is a telescope which takes a mask at what would have been its focal plane, and projects light through it.

and inept use of a telescope.

What is a CBP

- CBP stands for Collimated Beam Projector
- Essentially, it's a telescope "run backwards"
- A telescope is a device which maps angles to positions

So reversing this...

- This results in multiple "pencil-beams" of light coming out of the CBP (see Giles the cheese hedgehog)
- The angles at which these beams exit the CBP are defined by the position of the holes in the mask

What is a CBP

- CBP stands for Collimated Beam Projector
- Essentially, it's a telescope "run backwards"
- A telescope is a device which maps angles to positions

So reversing this...

- The mask pattern is therefore re-imaged by the observing telescope onto its focal plane
- Meaning we can place spots of our choosing at will

But why?

- Because it mimics a (monochromatic) source at infinity
- And because the diameter of these output beams
 == the diameter of the CBP telescope (~30cm)
 - it's finite (unlike the planar wavefront from stars)
 - and therefore only samples a portion of the optics of the main telescope (primary mirror, filters etc.)
- These properties mean it can be used for all sorts of fun things...

Like what?

A Collimated Beam Projector allows us to:

Make 'photometric flat-fields'

And also, as an aside:

- Monitor the filter transmission profiles, including as a function of position on the filter
 - Although we are assured that the LSST filter edges won't move over time (unlike every filter ever made previously), it is probably prudent to confirm/measure this.
- Provides a convenient alternative method to differentiate between between electronic crosstalk and optical ghosting, i.e. without relying on cosmics (low signal) or bleed trails (messy)
- Measure absolute throughput (?!?!)

Variable definitions

System response function

$$S_{\text{sys}} = S_{QE} S_{pixel} S_{optical}$$

Flat-field observation
$$F = (1 + i + A)S_{sys}$$

- S_{QE} = System response due to quantum efficiency Multiplicative
- S_{pixel} = (static) pixel size variations: intrinsic variation, tree-rings
- $i = \text{non-uniformity in the flat-field screen illumination} \leftarrow Additive$
- A = ghosting/scattered light from the flat-field screen Additive
- Other effects:
 - Vignetting flat in λ , but degenerate with QE, opposite in sign to $S_{optical}$

Flat-field Illumination (i)

Ghosting (A)

$$A = -0.07 \cos (2\pi x) \qquad A = - (0.04 \cos (\pi x) + 0.04 \cos (\pi y))$$

$$\begin{array}{c} \text{Pigure credit: R. Lupton} \\ \text{TD} \\ \text{Merlin Fisher-Levine} & \text{PACCD - BNL - "Dec. 1st 2016} \\ \text{2D} \\ \end{array}$$

Optical Distortion (Soptical)

Quantum Efficiency (S_{QE})

Pixel Sizes (Spixel)

$$S_{pixel} = 1 + 0.01 \sin(50\pi x)$$

Figure credit: R. Lupton

- Origins off-chip by random amount → random phase
- Incommensurate periods
- Random chip orientation

 $S_{pixel} = 1 + 0.01 \sin(v_i \pi x + \phi_i)$ v = [59, 61, 67, 71, 73, 79, 83, 89, 97]

1D

Pixel Sizes (Spixel)

$$S_{pixel} = 1 + 0.01 \sin(50\pi x)$$

Figure credit: R. Lupton

- Origins off-chip by random amount → random phase
- Incommensurate periods
- Random chip orientation

 $S_{pixel} = 1 + 0.01 \sin(v_i \pi x + \phi_i)$ v = [59, 61, 67, 71, 73, 79, 83, 89, 97]

Putting these together...

Reconstruction from CBP data (1)

Figure credit: R. Lupton

- 1) Measure flat-field (green)
- 2) Take CBP samples (blue) NB these see S_{sys} but not additive parts i + A
- 3) Spline interpolate

Reconstruction from CBP data (1)

Figure credit: R. Lupton

- 1) Measure flat-field (green)
- 2) Take CBP samples (blue) NB these see S_{sys} but not additive parts i + A
- 3) Spline interpolate

Reconstruction from CBP data (2)

Reconstruction from CBP data (3)

Figure credit: R. Lupton

Reconstruction from CBP data (4)

Figure credit: R. Lupton

6) Divide the flat-field by the smoothed illumination correction

Residuals

Figure credit: R. Lupton

Reconstruction from CBP data (1)

Place sample points in 2D

Reconstruction from CBP data (1)

Place sample points in 2D

Reconstruction from CBP data (2)

Reconstruction from CBP data (3)

Reconstruction from CBP data (4)

Reconstruction from CBP data (5)

Residuals

Residuals

It's real!

Photo credit: M. Coughlin

It works! (At CTIO/DECam)

- 1st prototype
- Focus was poor due to rough transit
- For a first try it worked wonderfully!

It works! (At Pan-STARRS)

Filter transmission measurement at Pan-STARRS

Figure credit: M. Coughlin, N. Mondrik, J. Tonry, C. Stubbs

Conclusion

- The CBP allows us to:
 - Calculate the system response function, S_{sys} , and correct for the ghosting and non-uniform illumination in dome-flats
 - Do this as a function of wavelength by using monochromatic light for both dome-flats and CBP illumination
 - Thereby accurately flat-field our images to unprecedented precision, and do so correctly for any given SED
 - Sample only a portion of the pupil at a time, allowing characterisation of the filter transmission as a function of position
- As a bonus, we also get help with crosstalk measurements and monitoring the evolution of the filter bandpasses over time.

Backup slides

Residuals vs. CBP samples

